119 research outputs found

    Swept volume evaluation using the BSP-dexel representation for the 5-axis CNC machining simulation

    Get PDF
    A new approach to the construction of a volume swept by the cutting tool is proposed for modeling 5-axis computer numerical control milling. A tool is considered to take the form of an arbitrary body of revolution. The main difference of the proposed approach is to provide the possibility of direct construction of the bulk synchronous parallel-dexel model, which, in turn, provides an effective modeling of the cutting process. Thus, it was possible to expand the scope of the given model by including the possibility to simulate arbitrary 5-axis computer numerical control programs. To confirm the correctness of the proposed approach, a program implementation of the corresponding algorithms has been performed. Examples of modeling of 5-axis milling processing of real parts and data on time costs for the suggested modeling are given. The high efficiency of the proposed approach is proven by the results of the experiments

    The impact of 24 weeks of supervised endurance versus resistance exercise training on left ventricular mechanics in healthy untrained humans.

    Get PDF
    BACKGROUND: In addition to the well-known cardiac structural adaptation to exercise training, little work examined changes in LV mechanics. With new regional and global indices available we sought to determine the effect of 24 weeks endurance versus resistance training on LV mechanics. METHODS AND RESULTS: 23 male subjects were randomly allocated to either a 24-week endurance- or resistance-training program. Pre- and post-training 2D echocardiographic images were acquired. Global LV mechanics (strain [ε]) were recorded in longitudinal, circumferential and radial planes. Rotation was assessed at apical and basal levels. In addition, longitudinal ε-volume loops, across the cardiac cycle, were constructed from simultaneous LV ε (longitudinal and transverse strain) and volume measurements across the cardiac cycle as a novel measure of LV mechanics. Marginal differences in ε and rotation data were found between groups. Post-training, we found no change in global peak ε data. Peak basal rotation significantly increased after training with changes in the endurance group (-2.2±1.9o to -4.5±3.3o) and the resistance group (-2.9±3.0o to -3.4±2.9o) . LV ε-volume loops revealed a modest rightward shift in both groups. CONCLUSIONS: Whilst most global and regional indices of LV mechanics were not significantly altered, 24 weeks of intense supervised exercise training increased basal rotation. Further studies that assess LV mechanics in larger cohorts of subjects and those with cardiovascular disease and risk factors may reveal important training impacts

    Finite-element simulation of the cold stamping process of spherical vessels

    Get PDF
    A specific process of manufacturing of vessel shell tabs, namely the method of cold stamping is studied in this paper. Recommendations are proposed to gain the proper technology of manufacturing spherical vessels with a volume above 600 cubic meters with regard to labor saving of tabs stamping on hydraulic press. The necessity of having proper technology of stamping is motivated by the large quantity of manual operations, having a direct influence on the conversion costs of a spherical vessel as a whole. The importance of this research is connected with the necessity of multiple shape control of tabs being manufactured during stamping and time-consuming point-by-point shaping-up. The reduction of material costs is supported by using finite-element simulation. Problems are solved with specific modules of the computer aided engineering-system ABAQUS. The results of some finite-element simulations are described. The analysis of stress-strain state at each step of the application of loads is performed

    The Radio - 2 mm Spectral Index of the Crab Nebula Measured with GISMO

    Full text link
    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power law spectrum, extrapolated up to a break frequency of log(nu_{b} [GHz]) = 2.84 +/- 0.29 or nu_{b} = 695^{+651}_{-336} GHz. The Crab Nebula is well-resolved by the ~16.7" beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.Comment: Accepted for publication in the Ap

    Angular Power Spectra of the Millimeter Wavelength Background Light from Dusty Star-forming Galaxies with the South Pole Telescope

    Get PDF
    We use data from the first 100 square-degree field observed by the South Pole Telescope (SPT) in 2008 to measure the angular power spectrum of temperature anisotropies contributed by the background of dusty star-forming galaxies (DSFGs) at millimeter wavelengths. From the auto and cross-correlation of 150 and 220 GHz SPT maps, we significantly detect both Poisson distributed and, for the first time at millimeter wavelengths, clustered components of power from a background of DSFGs. The spectral indices between 150 and 220 GHz of the Poisson and clustered components are found to be 3.86 +- 0.23 and 3.8 +- 1.3 respectively, implying a steep scaling of the dust emissivity index beta ~ 2. The Poisson and clustered power detected in SPT, BLAST (at 600, 860, and 1200 GHz), and Spitzer (1900 GHz) data can be understood in the context of a simple model in which all galaxies have the same graybody spectrum with dust emissivity index of beta = 2 and dust temperature T_d = 34 K. In this model, half of the 150 GHz background light comes from redshifts greater than 3.2. We also use the SPT data to place an upper limit on the amplitude of the kinetic Sunyaev-Zel'dovich power spectrum at l = 3000 of 13 uK^2 at 95% confidence.Comment: 18 pages, 9 figure

    Extragalactic millimeter-wave sources in South Pole Telescope survey data: source counts, catalog, and statistics for an 87 square-degree field

    Get PDF
    We report the results of an 87 square-degree point-source survey centered at R.A. 5h30m, decl. -55 deg. taken with the South Pole Telescope (SPT) at 1.4 and 2.0 mm wavelengths with arc-minute resolution and milli-Jansky depth. Based on the ratio of flux in the two bands, we separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei (AGN) and one consistent with thermal emission from dust. We present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800 mJy at 2.0 mm. The 2.0 mm counts are dominated by synchrotron-dominated sources across our reported flux range; the 1.4 mm counts are dominated by synchroton-dominated sources above ~15 mJy and by dust-dominated sources below that flux level. We detect 141 synchrotron-dominated sources and 47 dust-dominated sources at S/N > 4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite (IRAS). However, most of the bright, dust-dominated sources have no counterparts in any existing catalogs. We argue that these sources represent the rarest and brightest members of the population commonly referred to as sub-millimeter galaxies (SMGs). Because these sources are selected at longer wavelengths than in typical SMG surveys, they are expected to have a higher mean redshift distribution and may provide a new window on galaxy formation in the early universe.Comment: 35 emulateapj pages, 12 figures, 5 table

    T-RaMiSu : The Two-meter Radio Mini Survey I. The Bootes Field

    Get PDF
    W. L. Williams, H. T. Intema, and H. J. A. Röttgering, 'T-RaMiSu: the Two-meter Radio Mini Survey: I. The Boötes Field', Astronomy & Astrophysics, Vol. 549, A55, (2013). The version of record is available at DOI: 10.1051/0004-6361/201220235. Published by EDP Sciences. © ESO 2012.We present wide area, deep, high-resolution 153 MHz GMRT observations of the NOAO Bootes field, adding to the extensive, multi-wavelength data of this region. The observations, data reduction, and catalogue construction and description are described here. The seven pointings produced a final mosaic covering 30 square degrees with a resolution of 25". The rms noise is 2 mJy/beam in the centre of the image, rising to 4-5 mJy/beam on the edges, with an average of 3 mJy/beam. Seventy-five per cent of the area has an rmsPeer reviewe

    Interference of H-bonding and substituent effects in nitro- and hydroxy-substituted salicylaldehydes

    Get PDF
    Two intramolecular interactions, i.e., (1) hydrogen bond and (2) substituent effect, were analyzed and compared. For this purpose, the geometry of 4- and 5-X-substituted salicylaldehyde derivatives (X = NO2, H or OH) was optimized by means of B3LYP/6-311 + G(d,p) and MP2/aug-cc-pVDZ methods. The results obtained allowed us to show that substituents (NO2 or OH) in the para or meta position with respect to either OH or CHO in H-bonded systems interact more strongly than in the case of di-substituted species: 4- and 3-nitrophenol or 4- and 3-hydroxybenzaldehyde by ∼31%. The substituent effect due to the intramolecular charge transfer from the para-counter substituent (NO2) to the proton-donating group (OH) is ∼35% greater than for the interaction of para-OH with the proton-accepting group (CHO). The total energy of H-bonding for salicylaldehyde, and its derivatives, is composed of two contributions: ∼80% from the energy of H-bond formation and ∼20% from the energy associated with reorganization of the electron structure of the systems in question

    Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception

    Get PDF
    Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas
    corecore